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Magnetostatic Wave Propagation in a Finite
YIG-Loaded Rectangular Waveguide

MASSOUDE RADMANESH, CHIAO-MIN CHU, aND GEORGE 1. HADDAD, FELL.OW, IEEE

Abstract —The propagation of magnetostatic waves (MSW) in a wave-
guide partially loaded with a low-loss ferrite slab is investigated theoreti-
cally. The most common low-loss ferrite material used for MSW propa-
gation is epitaxial yttrium iron garnet (YIG). A YIG slab is placed inside
and along the guide and not in contact with the sidewalls of the waveguide.
The dc magnetic field is assumed to be parallel to the YIG slab and
perpendicular to the direction of propagation. Using the integral equation
method, the dispersion relation is found to be an infinitely large determi-
nant equal to zero. Proper truncation of this determinant and numerical
analysis to find its roots are carried out in this work. It is seen that in
order to obtain high values of group time delay, the YIG slab must be
narrow and placed at the bottom of the guide. On the other hand, to
maximize the device bandwidth, a narrow YIG slab positioned at the top
inside surface of the waveguide is preferred. It is also noticed that there
exists a tradeoff between the time delay and the device bandwidth and that
maximization of one property leads to a poor value in the other. Thus,
some design compromises should be made. It is also observed that the
frequency range of operation of the device can be adjusted by an external
magnetic bias field. This property of tuning the device to operate in any
frequency range adds an extra dimension of flexibility to the operation and
also to the design of these devices.

I. INTRODUCTION

AGNETOSTATIC-WAVE PROPAGATION in a

yttrium iron garnet (YIG) slab in free space on an
infinite ground plane or bounded by two infinite parallel
ground planes or completely filling a waveguide has been
reported in previous papers [1]-[3]. Some results pertinent
to the design and construction of.delay lines and filters
were also given [4]-[6]. The theoretical analysis carried out
by all these earlier works is based on the method of
separation of variables, whereby a closed form for the
dispersion relation may be obtained. The case of magneto-
static-wave (MSW) propagation in a YIG slab enclosed in
a waveguide as illustrated in Fig. 1 has never been studied.
In this paper, the propagation of magnetostatic waves in a
rectangular waveguide partially filled with a YIG slab is
studied theoretically. The dc external magnetic field is
parallel to the slab and perpendicular to the direction of
propagation. The slab is placed inside and along the guide
but not necessarily in contact with the waveguide walls. To
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Fig. 1. Device configuration.

simplify the analysis, the slab is assumed to be thin, so that
approximate numerical solution becomes feasible.

The introduction of a gap length (x,) is motivated to
account for the loose contacts between the YIG slab and
waveguide walls and to provide a general structure for the
design of delay lines. ‘

For the configuration shown in Fig. 1, if the gap length
(x,) is zero, conventional mode analysis may be used to
solve for the dispersion relation [7]. However, when x, is
nonzero, numerical analysis based on the integral equation
formulation appears to be the only means.

Based on the integral equation method, the problem of
magnetostatic-wave propagation in a YIG slab of finite
width inside a waveguide (Fig. 1) is analyzed, and the
magnetic potential function in terms of an integral equa-
tion is derived in Section 1I. In Section III, an approximate
numerical solution to the integral equation worked out in
the earlier section is developed. Computer results based on
the approximate solution for the dispersion relation and
group time delay per unit length in a certain frequency
range are presented in Section IV. A brief conclusion and
some final discussions follow in Section V.

JI. THE INTEGRAL EQUATION METHOD

As noted earlier, when the width of the slab is less than
the width of the waveguide, that is, when x,# 0 (Fig. 1),
the mode analysis method appears to be fruitless and the
integral equation method seems to be more appropriate.
The analysis developed in this section is based on this
latter method. In this method, an integral equation for the
tnagnetic potential function inside the YIG region is de-
duced in steps as described below. The implied time de-
pendence (¢) is assumed to be of the form ¢/ (where w is
the angular frequency) and for simplicity is omitted in all
of the following expressions.

1) Assuming wave propagation in the y-direction, the
y-variation of all functions involved in this study is there-

0018-9480,/86,/1200-1377$01.00 ©1986 IEEE



1378

fore of the form e ~“*”, where K is the wavenumber. In this
manner, the magnetic potential function ¢(x, y, z) inside
the YIG region can be written as

Y(x,p,z)=0(x.z)e 7%, (1)
Then, except for the common factor e /%7, the small-signal
magnetic field intensity /, the small-signal magnetic flux
density b, and the small-signal magnetization m in the
YIG region are given as follows:

h=vé— jKép (2)
E=Mo.‘:‘r‘il_ (3)
m=(,~1)h (4)

where I is the identity tensor and g, is the relative
permeability tensor defined as

_ ({1 0 0
I=lo 1 0 (5)

0 0 1

1 0 0
=0 K (6)

0 —-JK, p

and
p=1+ 0wy /(02 - &?)

X, = wwM/(wg- wz)

wo = poYH,, Wy = oYM,
po and y are the free-space permeability constant and
gyromagnetic ratio ( = 2.8 MHz/QOe), respectively, w is the
operating frequency in radians, and H, and M, are the
internal magnetic field and saturation magnetization, re-
spectively [8].

Note that the internal magnetic field (H;) is given by
Hy=H, — N.M,, where N, is the demagnetizing factor in
the x-direction. For a thin slab with the z-axis perpendicu-
lar to the broad face, N, = 0 [9]. Therefore, in this analysis
to the first order of approximation, the demagnetizing
fields are assumed to be negligible and H,= H,,.

2) From m above, the magnetic sources can be ob-
tained. The total magnetic charge density consists of two
parts: a) the magnetic volume charge density (p,) and b)
the magnetic surface charge density (p,). These magnetic
sources can be expressed as

p, ==V i+ jKm, (7)
p, =i (8)

A

where 7 is a unit vector normal to the slab surface.
Substituting (4) in (7) and (8) yields

p,(x,2) =K*(p—-1)¢(x,z)~(n—1)(3%(x, z)/3%z)
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It is to be noted that there are no surface charges at
surfaces x = x, or x =a — x,.

3) The Green’s function, G(x, z)e /X7, for a magnetic
line source located at (x’, z’) inside a waveguide satisfies
(3%/0x+ 3%/822)G(x,z)— K?G(x,z)

=8(x—x")8(z—-2z"). (11)
The solution to (11) which satisfies the following boundary

conditions
(0G/3x) =0,

(0G/9z) =0,

at x=0,a
at z=0,b
is given by
e o]
G(x,x,z,z’)= X A,cosnmx’/a
n=0
-cosnmx /acoshy, (b —z")coshy/z (12a)
for z < z’, and by
o0
G(x,x',z,z/)= Y A,cosnmx’/a
n=20
-cosnmx /acoshy,z'coshy,(b—z) (12b)

for z > z/, where
-2

A =
" y/a(1+8,,)sinhy/b
]1/2

v,= K>+ (na/a)’
_J1, n=9_0
Welo nso

4) Considering a uniform guide cross section, the mag-
netic potential function can be written as

o(x,z)= ffYIGpU(x’, 2')G(x,x',2,2') dx’ dz’

area

+f p,(x',2)G(x,x", 2, 2"y dx’. (13)
YIG
sides

Using (9), (10), (12), and (13), we obtain the following
integral equation for ¢(x, z) in the YIG region (ie., z; < z
<z, Xg< X< a—xy)

o(x,z)= f:ixosz[Kz(u -o(x’,z

- (u‘ _1)¢zz(x,’ ZI)]
“G(x,x',z,2") dx’ dz’ + /aixo[KlKYj)(x’, z7)

and

(b =1)¢,(x’, 2,)]
-G(x,x",2,2;) dx’' + fa‘xo[— K. K$(x',z,)

(9) +(p—1)¢,(x’,2,)]
and -G(x,x,z,2,)dx’. (14)
K K¢ (x,z))—(p—1)d¢(x, z,)/0z, z=1z; (10a)

po(x,2) =

— KiK¢(x.z,)+(p—1)0¢(x, 2,) /92,

z=12,.

(10b)
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1II. THE APPROXIMATE NUMERICAL SOLUTION

The two-dimensional integral equation given by (14) is
difficult to solve numerically. For our problem, because
the slab is assumed to be thin, ¢(x, z) may be assumed to
vary linearly in z.! Therefore, if we denote

o(x,2,) = fi(x) (15a)
and
¢(x,2,) = f,(x) (15b)

then ¢(x, z) is approximately given by

o(x,z) = [f2(x)(z —z)+ fi(x)(z,~ Z)]/(Zz — 7).
(16)

With this approximation, then

36/0z = [ f,(x)= L,(x)] /(2,- 2,) (17)

and
[9%,322] =0. (18)
Introducing these approximations in (14), carrying out

the integral in z, and letting z = z; and z = z,, the follow-
ing system of coupled equations results:

fi(x) == X B,cosnmx/a (giici + giyes) (19)
n=0

and
(%)=~ ) B,cosnwx/a (ghel +ghe3) (20)
- n=0

where

c{’=fa_xof1(x)cosnvrx/adx (21)
X0

c§’=/a_x0f2(x)cosnvrx/adx (22)
*o

and g, gi, g%, and g are known constants which
depend on the device geometry, wavenumber K, and
parameter n.

- Multiplication of (19) and (20) by cos mzx/a and in-
tegration along the interface from x =x, to x=a— x,,
yields the following infinite system of linear equations:

)

'+ X a,(ghel + i) =0 (23a)
n=0
o0

ef+ L a,(ghel + ghes) =0 (23b)
n=20

!Approximately, since the potential distribution in x can be expressed
as summations of cos nwx /a and sin nwx /a then the potential distribu-
tion in z inside the slab must be the summations of coshy,z and sinhvy,, z,
where v, is the transverse propagation constant [7] given by

1,2
e[ L]

Thus, for the first dominating mode, the thin-slab criterion for the
principal dominating mode (n=1) states that the slab thickness (1)
should satisfy the following condition in order for the potential distribu-
tion to vary linearly in z:

(n=1).

t<=<1/n
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Fig. 2. Relationship of the wall gap (x,) and the cutoff point (N).

where
a— Xg
B,cos mmx /acosnwx/adx
*o

(m+=0, n#0). (24)
From (23a) and (23b), it is evident that they can be
decoupled into two subsystems, one for even modes and

another for odd modes. Considering odd modes only, (23)
in matrix form can be written as

1+ M, M, --|[c

1
Mll.

odd modes only (25)

where M and C are matrices defined by

M = aljgljl alngJZ l=1,3,5, (26)
i _a,jgélz aug%z ]21,3,5,
and
Ci
=1 (27)
| €2

An equation similar to (25) can also be written for the even
modes. :

For nontrivial unique solutions to c¢”’s, the infinite
determinant of the coefficient matrix in (25) must be zero.
The dispersion relation between w and K is therefore
obtained from the vanishing of this infinite determinant.

IV. CoMPUTER RESULTS

For approximate numerical determination of the disper-
sion relation for the lowest order mode (m=1), (25) is
truncated to a finite order N and the determinant of the
N X N matrix denoted by Dy(w, K) is set to zero.

A computer program was developed to find the first root
of

Dy(w,K)=0

(28)
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TABLE I
COMPARISON OF RESULTS
N=8 Feletive Error
Frequency Ixact Rict A;;roxlmet;e Root [(Ké - Ko)/xo] x 100
£ {GFz} %y (e=mh) s (ex?) (Percert)
7.5 - 1.1%5 - 1.7 0.1k
7.9 - 2.05¢ - 2.053 0.15
8.9 - 5.37% - 5.382 0.05
9.5 - 9,74 - 9.760 0.12
9.9 - 22.843 - 23.011 0.73
t
b KA
7z 7.
}
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Fig. 3. Effect of increasing the air gap (x,) on the dispersion curve.

for a given w. For meaningful results, computation of the
first root was carried out for a sequence of increasing
values of N until a convergent first root was obtained. In
general, the cutoff number (N') increases with the gap size
(x,). A typical dependence of N with x is shown in Fig,.
2. The accuracy of our computer algorithm is also tested
for the limiting case of x,= 0, for which exact results are
obtained by mode analysis [7]. The comparison of numeri-
cal results using two different techniques is illustrated for a
typical case in Table 1. It appears from this table that the
numerical algorithm is quite effective.

Several propagation properties and effects have been
studied for the first-order mode and are briefly described
in the rest of this section. The effect of increasing the
normalized air gap (2x,/a) on the dispersion relation for
the special case when the slab is placed against the top of
the guide is shown in Fig. 3. It is noted that the dispersion
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curves shift downward to lower frequencies as the air gap
Increases.

The combined effect of the position and width of the
YIG slab is shown in Fig. 4. In this figure, the dispersion
relations for several positions (z,) of the slab, each posi-
tion with two values of x,, are presented. This figure
shows that as the slab position is lowered, the dispersion
curves are compressed with smaller bandwidths.

The corresponding group time delay per unit length in
nanoseconds per centimeter defined by the relation 7, =
(dw/3K)~!is shown in Fig. 5. From this figure, it is seen
that for fixed time delay the operating frequency can be
adjusted effectively by varying the position z,, while for a
fixed frequency the time delay can be increased by in-
creasing the gap length x,,.

Tunable properties are also investigated by varying the
magnetic bias field. Fig. 6 shows the effect of magnetic
bias field on the dispersion curves for a particular geome-
try, that is, when x,=0. As can be seen, the dispersion
curves move up or down the w- K plane by varying H_.
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Fig. 6. Effect of magnetic bias field on the dispersion characteristics.

V. CONCLUSIONS

The propagation and time delay characteristics of mag-
netostatic waves in a waveguide partially filled with a YIG
slab, with an equal air gap on each of its sides, were
studied. Numerical results were presented for several cho-
sen configurations over a frequency range of approxi-
mately 6.0-10.00 GHZ. The dependence of the dispersion
relation and time delay per unit length on the position and
width of the YIG slab were presented.

It is concluded that as the slab width decreases, the
delay time increases and dispersion curves bandwidth shifts
downward, while as the slab position is lowered the delay
time increases and the dispersion curves are compressed
with smaller bandwidths. This means that roughly speak-
ing, the position of the slab controls the bandwidth and its
width controls the center frequency of the device.

From Figs. 4 and 5, it is seen that in order to obtain
high values of group time delay per unit length, the YIG
slab must be narrow and placed at the bottom of the
guide. On the other hand, to maximize the device band-
width, a narrow YIG slab positioned at the top inside
surface of the waveguide is preferred. It is also noticed that
there- exists a tradeoff between the time delay per unit
length and the device bandwidth and maximization of one
property leads to a poor value in the other. Thus, some
design compromises should be made.

Finally, the tunable properties of the general structure
by means of the magnetic bias field adds a new dimension
of flexibility for its operation in any desired frequency
range.
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