
IEEE TRANSACTIONS ON MlCROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO 12, DECEMBER 1986 1377

Magnetostatic Wave Propagation in a Finite
YIG-Loaded Rectangular Waveguide
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Abstract —The propagation of magnetostatic waves (MSW) in a wave-

gnide partially loaded with a low-loss ferrite slab is investigated theoreti-

tally. The most common low-loss ferrite material used for MSW propa-

gation is epitaxial yttrium iron garnet (YIG). A YIG slab is placed inside

and along the guide and not in contact with the sidewalls of the wavegnide.

The dc magnetic field is assumed to be parallel to the YIG slab and

perpendicular to the dkeetion of propagation. Using the integral equation

method, the dispersion relation is found to be an infinitely large determi-

nant equal to zero. Proper truncation of this determinant and numerical

analysis to find its roots are csqried out in this work. It is seen that in

order to obtain high values of group time delay, the YIG slab must be

narrow and placed at the bottom of the guide. On the other hand, to

maximize the device bandwidth, a narrow YIG slab positioned at the top

inside surface of the waveguide is preferred. It is also noticed that there

exists a tradeoff between the time delay and the device bandwidth and that

maximization of one property leads to a poor value in the other. Thus,

some design compromises shonfd be made. It is also observed that the

frequency range of operation of the device can be adjusted by an extemaf

magnetic bias field. Tfds property of tuning the device to operate in any

freqnency range adds an extra dimension of flexibility to the operation and

afso to the design of these devices.

L INTRODUCTION

M AGNETOSTATIC-WAVE PROPAGATION in a

yttrium iron garnet (YIG) slab in free space on an

infinite ground plane or bounded by two infinite parallel

ground planes or completely filling a waveguide has been

reported in previous papers [1]–[3]. Some results pertinent

to the design and construction of delay lines and filters

were also given [4]–[6]. The theoretical analysis carried out

by all these earlier works is based on the method of

separation of variables, whereby a closed form for the

dispersion relation may be obtained. The case of magneto-

static-wave (MSW) propagation in a YIG slab enclosed in

a waveguide as illustrated in Fig. 1 has never been studied.

In this paper, the propagation of magnetostatic waves in a

rectangular waveguide partially filled with a YIG slab is

studied theoretically. The dc external magnetic field is

parallel to the slab and perpendicular to the direction of

propagation. The slab is placed inside and along the guide

but not necessarily in contact with the waveguide walls. To
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Fig. 1. Device configuration.

simplify the analysis, the slab is assumed to be thin, so that

approximate numerical solution becomes feasible.

The introduction of a gap length (xO) is motivated to

account for the loose contacts between the YIG slab and

waveguide walls and to provide a general structure for the

deSigII of delay lines.

For the configuration shown in Fig. 1, if the gap length

(xO) is zero, conventional mode analysis may be used to

solve for the dispersion relation [7]. However, when x ~ is

nonzero, numerical analysis based on the integral eqUaldOIl

formulation appears to be the only means.

Based on the integral equation method, the problem of

magnetostatic-wave propagation in a YIG slab of finite

width inside a waveguide (Fig. 1) is analyzed, and the

magn(etic potential function in terms of an integral equa-

tion is derived in Section II. In Section III, an approximate

numerical solution to the integral equation worked out in

the ealrlier section is developed. Computer results based on

the approximate solution for the dispersion relation and

group time delay per unit length in a certain frequency

range are presented in Section IV. A brief conclusion and

some final discussions follow in Section V.

II. THE INTEGRAL EQUATION METHOD

As noted earlier, when the width of the slab is less than

the width of the waveguide, that is, when XO+ t) (Fig. 1),

the mode analysis method appears to be fruitless and the

integral equation method seems to be more appropriate.

The analysis developed in this section is based on this

latter method. In this method, an integral equation for the

magnetic potential function inside the YIG region its de-

duced in steps as described below. The implied time de-

pendence (t) is assutied to be of the form eJ”t (where o is

the angular frequency) and for simplicity is omitted in all

of the following expressions.

1) Assuming wave propagation in the y-direction, the

y-variation of all functions involved in this study is there-
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fore of the form e ‘~K~, where K is the wavenumber. In this

manner, the magnetic potential function ~ (x, y, z) inside

the YIG region can be written as

*(x, y,z)=@(x. z)e-JKY. (1)

Then, except for the common factor e ‘JKJ’, the small-signal

magnetic field intensity ~, the small-signal magnetic flux

density ;, and the small-signal magnetization iii in the

YIG region are given as follows: -

~ =v~ – jK@j

~=po~r.~

fi=(~r-;).~

—

where ~ is the identity tensor and

permeability tensor defined as

()

100
~=olo

001

(2)

(3)

(4)

~. is the relative

(5)

d -!%‘:1) “)
and

p=l+(++JM/(ti:-u2)

K1 = uuM/(@; – d)

% = POY% 7 UM = poyll!fo.

p o and y are the free-space permeability constant and

gyromagnetic ratio ( = 2.8 MHz/Oe), respectively, o is the

operating frequency in radians, and Ho and IWO are the

internal magnetic field and saturation magnetization, re-

spectively [8].

Note that the internal magnetic field (iYo) is given by

Ho= H~c – iVYMo, where NX is the demagnetizing factor in

the x-direction. For a thin slab with the z-axis perpendicu-

lar to the broad face, NX = O [9]. Therefore, in this analysis

to the first order of approximation, the demagnetizing

fields are assumed to be negligible and Ho= H~C.
2) From iii above, the magnetic sources can be ob-

tained. The total magnetic charge density consists of two

parts: a) the magnetic volume charge density (p”) and b)

the magnetic surface charge density (p, ). These magnetic

sources can be expressed as

pC, =–V, K+jKmY (7)

p,=~.$ (8)

where i? is a unit vector normal to the slab surface.

Substituting (4) in (7) and (8) yields

P.(X>Z) =K2(P–l)$I(X, S)-(y-I)( d20(X, Z)/a2Z)

(9)

and

It is to be noted that there are no surface charges at

surfaces x = X. or x = a —xo.

3) The Green’s function, G(x, z) e-JKJ’, for a magnetic

line source located at (x’, z’) inside a waveguide satisfies

(6’2/dx2+ d2/i3z2)G(x, z)- K2G(x, z)

=8( X–.X’)8(Z -Z’). (11)

The solution to (11) which satisfies the following boundary

conditions
(dG/dx) =0, at x=O, a

(6’G/dz)=O, at z=O, b

is given by

G(x, x’, z, z’) = % A.cosnrx’/a
~=o

. cos nnx/a coshy~(b – z’) coshy~z (12a)

for z < z’, and by

G(x,.x’, z,z’) = kAncosnrx’/a
~=o

. cos nnx/a coshy~z’coshy~(b – z) (12b)

for z > z‘, where
–2

An=
y~a(l + 80ti) sinhy~b

Y;= [K2+(nm/a)2]1’2

and

(
8on = :’

n=()

, n#O.

4) Considering a uniform guide cross section, the mag-

netic potential function can be written as

@(x, z) =~~ p,,(x’, z’)G(x, x’, z,z’)dx’dz’
YIG
area

+~I~PS(X’,Z’)G(X> X’Z>Z’)~X’ (13)

sides

Using (9), (10), (12), and (13), we obtain the following
integral equation for +(x, z) in the YIG region (i.e., Z1 < z

~z2, xo<x<a —xO):

q@z)=j”- x0jz2[K2(~-l)@ (x’,z’)
Xo =1

-(IJ -l)+,=(X’, z’)]

.G(x, X’, Z, Z’) dx’dz’+ Ja-x”[mo(x’)%)
Lo

-(P-l)+=(X’,%)]

a — .x.

.G(x, x’, z>zl)dx’+ j[ – KIK@(x’, Z2)

Xo

+( P–l)@=(x’$ Z’)]

.G(x, x’, z,z2)dx’. (14)

{

KIK@(x, zl)–(p--l) O@(x, zl)/dz, Z=zl
p,(x, z)=

(lOa)

–KIKc$(x, z2)+(p-l)d@(x, z2)/dz, 2=22. (lOb)
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111. THE APPROXIMATE NUMERICAL SOLUTION

The two-dimensional integral equation given by (14) is

difficult to solve numerically. For our problem, because

the slab is assumed to be thin, +(x, z) may

vary linearly in z. 1 Therefore, if we denote

@(x, zl)=fl(x)

and

+(x, z,)= f,(x)

then $(x, z) is approximately given by

be assumed to

(15a)

(15b)

+(X, Z) = [f2(x)(z –zJ+f1(x)(z2 -z)]/(z2-zJ.

(16)

With this approximation, then

a~/az= [f2(x)–fl(x)]/( z2–z1) (17)

and

[d’@/r?z’] =0. (18)

Introducing these approximations in (14), carrying out

the integral in z, and letting z = ZI and z = Z2, the follow-

ing system of coupled equations results:

jl(x) = – ~ Bncos n~X/~ ( g:lcf + gf’c;) (19)
~=o

and

~2(x) = – ~ Bncos nmx/a (gjlcf + gJ2cJ) (20)

~=o

where

c?= J”-xOfl(X)COSnTx/’adx (21)
Xo

cJ=Ja-x0f2(x)cosnmx/adx

Xo

(22)

Bn=2/[a(l+80n)]

and g~l, g;2, g~l, and g~2 are known constants which

depend on the device geometry, wavenumber K, and

parameter n.

Multiplication of (19) and (20) by cos mwx/a and in-

tegration along the interface from x = X. to x = a – Xo,

yields the following infinite system of linear equations:

w

(CT + ~ ~mn gflq + gr’c; )=() (23a)
~=()

w
.)=OCT + ~ amn ( g;lcr + d’c’ (23b)

~=o

lApproximately, since the potentiaf distribution in x can be expressed
as summations of cos n ~x/a and sin n mx}a then the potential distribu-
tion in z inside the slab must be the summations of cosh Y. z and smh y. z,
where yn is the transverse propagation constant [7] given by

[
K2+~(nr/a)2

1

1/2

~n =

P

Thus, for the first dominating mode, the thin-slab crlterlon for the

principal dominating mode (n =1) states that the slab thickness (t)
should satisfy the following condition in order for the potential distribu-
tion to vary linearly in z:
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Fig. 2. Relationship of the wafl gap (xO) and the cutoff point ( AT).

where

J

a—x.

a=mn B. cos mvx/a cos nvx/a dx
Xo

(m#O, n+ O). (24)

From (23a) and (23b), it is evident that they can be

decoupled into two subsystems, one for even modes and

another for odd modes. Considering odd modes only, (23)

in matrix form can be written as

. . .

. . . 1 + M,i

. .

II
C1

. . . c’ =o,

odd modes only (25)

where M and C are matrices defined by

and

[1c’= c;,
c;

i=l,3,5, . . .

j=l,3,5, . . .
(26)

(27)

An equation similar to (25) can also be written for the (even

modes.

For nontrivial unique solutions to Cn‘s, the infinite

determinant of the coefficient matrix in (25) must be zero.

The dispersion relatiorl between Q and K is therefore

obtained from the vanishing of this infinite determinant.

IV. COMPUTER RESULTS

For approximate numerical determination of the disper-

sion relation for the lowest order mode (m =1), (2:5) is

truncated to a finite order N and the determinant of the

N x N matrix denoted by DN( w, K ) is set to zero.

A computer program was developed to find the first root

of

D,, (u. K)=O (28)t<l/y, (n=l). ,“. ., .
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TABLE I

COMPARISON OF RESULTS

N.8 Felet IV, Frror
:Xact RCct,,luer.cy +>r-,zete R,ot [ (K: - KO)/KO] x I gO

r (cF, ,
K. (cZ-l) K: (C~-l)

(F?,cert )

1.5 - 1.1:5 1,>17 0.111

7.9 - 2,0:0 - 2,053 0.15

9.9 - 5.3?9 - 5.3E2 0.05

9.5 - 9.7:: - 9.760 0.12

9.5 - 22.643 - 23,011 0.?3

b t

/////////////////////////
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Fig. 3. Effect of increasing the air gap (xO) on the dispersion curve.

for a given U. For meaningful results, computation of the

first root was carried out for a sequence of increasing

values of N until a convergent first root was obtained. In

general, the cutoff number (N) increases with the gap size

(xO). A typical dependence of N with XO is shown in Fig.
2. The accuracy of our computer algorithmic also tested

for thelimiting case of xO=O, for which exact results are

obtained by mode analysis [7]. The comparison of numeri-

cal results using two different techniques is illustrated for a

typical case in Table I. It appears from this table that the

numerical algorithm is quite effective.

Several propagation properties and effects have been

studied for the first-order mode and are briefly described

in the rest of this section. The effect of increasing the

normalized air gap (2x0 /a) on the dispersion relation for

the special case when the slab is placed against the top of

the guide is shown in Fig. 3. It is noted that the dispersion

ZO:O.95
1. .0.0

- 9.0 - b

:

g

t .0,4 cm

m. . 1800 o*
MO . 1750 0+
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Fig. 4. Combined effect of position and width of the slab on the
dispersion curves.

30, b

Ez3%,0 * , _

0 a
iidc

O:Zcm
b: I cm

)

Fig. 5. Effect of slab width and position on time delay/unit length,

curves shift downward to lower frequencies as the air gap

increases.

The combined effect of the position and width of the

YIG slab is shown in Fig. 4. In this figure, the dispersion

relations for several positions ( ZO) of the slab, each posi-

tion with two values of XO, are presented. This figure

shows that as the slab position is lowered, the dispersion

curves are compressed with smaller bandwidths.

The corresponding group time delay per unit length in

nanoseconds per centimeter defined by the relation ~~ =

( du/~K)-l is shown in Fig. 5. From this figure, it is seen

that for fixed time delay the operating frequency can be

adjusted effectively by varying the position ZO, while for a

fixed frequency the time delay can be increased by in-

creasing the gap length XO.

Tunable properties are also investigated by varying the

magnetic bias field. Fig. 6 shows the effect of magnetic

bias field on the dispersion curves for a particular geome-

try, that is, when XO= O. As can be seen, the dispersion

curves move up or down the u – K plane by varying H~C.
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Fig. 6. Effect of magnetic bias field on the dispersion characteristics.

V. CONCLUSIONS

The propagation and time delay characteristics of mag-

netostatic waves in a waveguide partially filled with a YIG

slab, with an equal air gap on each of its sides, were

studied. Numerical results were presented for several cho-

sen configurations over a frequency range of approxi-

mately 6.0–10.00 GHZ. The dependence of the dispersion

relation and time delay per unit length on the position and

width of the YIG slab were presented.

It is concluded that as the slab width decreases, the

delay time increases and dispersion curves bandwidth shifts

downward, while as the slab position is lowered the delay

time increases and the dispersion curves are compressed

with smaller bandwidths. This means that roughly speak-

ing, the position of the slab controls the bandwidth and its

width controls the center frequency of the device.

From Figs. 4 and 5, it is seen that in order to obtain

high values of group time delay per unit length, the YIG

slab must be narrow and placed at the bottom of the

guide. On the other hand, to maximize the device band-

width, a narrow YIG slab positioned at the top inside

surface of the waveguide is preferred. It is also noticed that

there exists a tradeoff between the time delay per unit

length and the device bandwidth and maximization of one

property leads to a poor value in the other. Thus, some

design compromises should be made.

Finally, the tunable properties of the general structure

by means of the magnetic bias field adds a new dimension

of flexibility for its operation in any desired frequency

range.
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